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Summary

The chronological implications of the month-length evidence are re-examined on the ba-
sis of additional data, and newer astronomical theories and insights about the clock-time
correction. The month-length evidence available by ǠǞǟǡ is internally consistent, and it
confirms the former conclusions of ǟǧǦǠ, although with slightly lowered confidence. It fa-
vors the High and disfavors the Middle chronologies with confidence levels between 95%
and 99%. A Bayesian argument intimates that the High chronology (Ammis

˙
aduqa year 1 =

1702 BC) is roughly 25 times more probable than each of the other three main chronolo-
gies (1646, 1638, or 1582 BC). Independently, also the Ur III evidence points toward a High
chronology (Amar-Sin year 1 = 2094 BC).

Keywords: Near Eastern Chronology; month-length dating; Venus Tablet; Ammis
˙
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tercalations; clock-time correction.

Die chronologischen Implikationen der Belege für Monatslängen werden in diesem Bei-
trag anhand von zusätzlichem Material sowie von neueren astronomischen Theorien und
Erkenntnissen über die Zeitkorrektur nachgeprüft. Die ǠǞǟǡ zur Verfügung stehenden Bele-
ge für Monatslängen sind in sich stimmig und bestätigen die Schlussfolgerungen von ǟǧǦǠ,
wenn auch mit etwas niedrigerer Konfidenz. Bei einem Konfidenzniveau zwischen 95 %
und 99 % wird die lange Chronologie zu Ungunsten der mittleren Chronologien favorisiert.
Ein Bayessches Argument verdeutlicht, dass die lange Chronologie (Ammis

˙
aduqa Jahr 1 =

1702 v. Chr.) ungefähr Ǡǣ-mal wahrscheinlicher ist als jede der anderen drei Chronologien
(1646, 1638 oder 1582 v. Chr.). Davon unabhängig deuten auch die Ur-III-zeitlichen Belege
auf die lange Chronologie hin (Amar-Sin Jahr 1 = 2094 v. Chr.)

Keywords: Chronologie Altvorderasiens; Monatslängen; Venus-Tafel; Ammis
˙
aduqa-Inter-

kalation; Zeitkorrektur.
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The suggestion to explore small prior probabilities for the additional intercalation (Sec-
tion ǣ.Ǡ.ǡ) is due to Jane Galbraith. Of course, all opinions and errors are my own.

ǟ Introduction

Month-length dating forms part of a tangled tale concerned with fixing the absolute
chronology of the ancient Near East. This tale is based on evidence from history (back-
reckoning using king lists, eponym lists, synchronisms, …), archaeology (stratigraphy,
pottery, …), and natural science (CǟǢ-dating, dendro-chronology, volcanic activity, …),
including astronomy (Venus Tablet, solar and lunar eclipses, month-lengths). The inter-
nal relative chronology of the period in question, which ranges from the late third to the
mid-second millennium, that is from the beginning of the Third Dynasty of Ur to the
end of the First Dynasty of Babylon, is now agreed upon to within very few years, but its
absolute position still is in doubt, and the disputes shift it forth and back over roughly
150 years. While the present paper concentrates on month-length dating, by necessity it
must touch on some of the other parts also.1

The last comprehensive treatment of the month-length evidence has been that by
Huber et al. in Astronomical Dating of Babylon I and Ur III (published in ǟǧǦǠ),2 followed
by Huber’s somewhat cursory re-takes and updates, spreading from ǟǧǦǥ to ǠǞǟǠ.3 These
papers had reached the conclusion that the month-length evidence overwhelmingly fa-
vored the High Venus chronology (HC, Ammis

˙
aduqa year 1= 1702 BC).

The current re-examination has been triggered by the recent flurry of activity con-
cerning the Old Assyrian eponym lists and the dendro-chronological dating of the Kül-
tepe site. This activity has collected strong, and as it seems, equally overwhelming ev-
idence in favor of the so-called Middle Venus chronologies. Barjamovic, Hertel, and
Larsen, in a comprehensive monograph published in ǠǞǟǠ, have settled on the tradi-
tional Middle Chronology (MC, Ammis

˙
aduqa year 1= 1646 BC).4 De Jong (in a paper

published in ǠǞǟǡ) and Nahm (in a paper published in ǠǞǟǢ) argue in favor of the Low
Middle Chronology (LMC, Ammis

˙
aduqa year 1= 1638 BC).5 Roaf (in a paper pub-

lished in ǠǞǟǠ) favors the Middle chronologies but advises caution.6

1 Note: The paper was written in early ǠǞǟǢ and is
based on materials available by ǠǞǟǡ.

2 Huber, Sachs, et al. ǟǧǦǠ.

3 Huber ǟǧǦǥ; Huber ǟǧǧǧ/ǠǞǞǞ; Huber ǠǞǞǞ; Huber
ǠǞǟǠ.

4 Barjamovic, Hertel, and Larsen ǠǞǟǠ.
5 De Jong ǠǞǟǡ; Nahm ǠǞǟǢ.
6 Roaf ǠǞǟǠ.
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In view of this seemingly irreconcilable conflict it is worthwhile – and perhaps even
mandatory – to re-examine the month-length evidence with the help of the currently
available material: (i) a moderately increased data base, (ii) more modern astronomical
theories, and (iii) a better insight into the clock-time correction. I shall concentrate on
the methodological aspects, in order to check and possibly identify weak spots of the
arguments.

New OB material has been supplied by Seth Richardson, new Drehem material by
Robert Whiting, and I am offering heartfelt thanks to both. With regard to method-
ological aspects it is relevant to note that (i) it does not suffice to scan the electronic
text catalogs for intercalations and day-ǡǞ dates – it is absolutely necessary to examine
the cuneiform sources in detail and to rely on the judgment of specialists, and (ii) that
more data do not necessarily imply improved chronological discrimination.

The Babylonian months are based on a lunar calendar, and their length alternates
irregularly between 29 and 30 days. The Babylonian day began at sunset, and the Babylo-
nian month began with the first visibility of the lunar crescent in the evening. According
to Babylonian custom, immediately after sunset of day 29, day 30 would begin in any
case. But if the moon became visible shortly thereafter, that is some 20–30 minutes after
sunset, the day would be denoted ‘returned’ (Akkadian turru) to become day 1 of the
following month (that is, the date would be changed retroactively, with the retroaction
spanning some 30 minutes). The preceding month thus would become hollow (29 days).
Otherwise the day would be ‘confirmed’ (kunnu) or ‘rendered complete’ (šullumu); see
the Akkadian dictionaries for these verbs, and in particular Neugebauer’s translation
and commentary of ACT No. 200 Sect. 15 for the technical use of the terms in mathe-
matical astronomy,7 and the letter BM 61719 (CT 22, No. 167), where the writer asks
for speedy information whether the day is kunnu or turru.

There are no intervals of 28 days between two calculated crescent sightings, and only
rare intervals of 31 days (about once in a century, and therefore statistically irrelevant).
It seems that a Babylonian day 30 always was followed by day 1, whether or not the
crescent was sighted. Since the synodic month has 29.53 days, one expects that 53% of
the months have 30 days and 47% 29 days. For randomly selected (wrong) chronologies
we therefore expect an agreement rate of 53% between calculated and observed ǡǞ-day
months, and 47% for Ǡǧ-day months. These rates for wrong chronologies are based solely
on astronomical theory. For a correct chronology the evidence from Neo-Babylonian
administrative texts (mostly texts dated on day 30) gives an agreement rate with modern
calculation of 67% (103 of 153 attestations). Actually, I find it more convenient to work
with expected miss rates; for ǡǞ-day months these are 47% for a wrong, 33% for a correct
chronology. If the data set contains also attestations of a few Ǡǧ-day months, the miss
rate for random wrong chronologies must be minimally adjusted upward.

7 O. E. Neugebauer ǟǧǣǣ, ǠǞǤ.
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The figure of 33% applicable to a correct chronology is an empirical estimate and
as such is affected by a standard estimation error of about 3.8 percentage points. Apart
from this estimation error we do not know for certain whether the NB miss rate is appli-
cable also to OB and Ur III times. The data sets are not exactly comparable; NB and OB
evidence mostly is from texts dated on day 30, while a substantial fraction of the Ur III
evidence also derives from other, and possibly more reliable data (e.g. from regular de-
liveries: one sheep per day for the dogs of Gula).

The principal criticism voiced against month-length dating seems to be that it has
not been proved that the Neo-Babylonian 33% rate for correct chronologies is applicable
to Old-Babylonian and Ur III data. This criticism is beside the point. The central argu-
ment showing that a certain chronology is right (thereby simultaneously establishing
that its competitors are wrong) consists in showing that the miss count of that chronol-
ogy is significantly below that to be expected from a wrong chronology. This argument
relies only on the theoretically secure rate of 47%. If the miss rate is not significantly be-
low 47%, we simply shall be unable to reach a conclusion. The 33% rate is used only in
an ancillary fashion, namely to add evidence that a certain chronology is wrong. I hope
to clarify these issues in the discussion of the Ammis

˙
aduqa-Ammiditana data.

The Venus Tablet remains a central part of the evidence.8 The paper by Nahm (pub-
lished in ǠǞǟǢ) contains a most recent, comprehensive discussion.9 In view of the agree-
ment of the pattern of intercalations with that of contemporary Old Babylonian texts
we now know for sure that the first 17 years of the Venus Tablet correspond to the first
17 years of the Old Babylonian king Ammis

˙
aduqa (see Section ǟǞ.ǟ in the Appendix

of this article). Moreover, we now know that we have the complete pattern of interca-
lations for those 17 years (more precisely: we know all intercalations contained in the
interval from year 1 month VII to year 18 month VI), and in particular we know the
exact distances between the months of that interval. Note that we do not know for sure
whether year 1 is normal or whether it contains a second Ulūlu (VI2). This uncertainty
is of some relevance in connection with the Ammiditana date (see Section ǣ.Ǡ).

I believe that only the four main Venus chronologies (Ammis
˙
aduqa year 1= −1701,

−1645, −1637, −1581) have a realistic chance of being correct.10 We distinguish them as
High (HC), (High) Middle (MC), Low Middle (LMC), and Low Chronology (LC). This
assertion in part is based on the Venus Tablet evidence and in part on the historical time
window now considered to be feasible. Among the other chronologies that have been
entered into the discussion in recent years, the Gasche-Gurzadyan chronology (year 1=
−1549) is incompatible with the lunar calendar, and the Mebert chronology (year 1=

8 Reiner and Pingree ǟǧǥǣ.
9 Nahm ǠǞǟǢ.

10 I am using the astronomical year count, which
differs by one year from the historical count – in
the latter, the year 1 BC is followed by AD 1.
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−1573) relies on some demonstrably wrong assumptions about the arcus visionis values
and on some questionable textual emendations.11

Current evidence centered on dendro-chronology and Assyrian eponym lists points
toward the Low Middle chronology (year 1= −1637). On the other hand, for the mid-
dle two chronologies the Venus phenomena show statistically significant deviations of
±2 days against calculation, on a 1% significance level. In particular, for the Low Middle
chronology and all four events the observations on average are about 2 days later than cal-
culated, while for the High Middle chronology they are correspondingly earlier.12 This
holds if the Old Babylonian observing and recording practices were basically the same
as the Late Babylonian ones. We do not know for sure how the Babylonian astronomers
dealt with adverse weather conditions. Ordinarily, the LB observers inserted educated
guesses for absent observations, possibly based on observations made one Venus period
(8 years) earlier, with the remark ‘not observed’ (NU PAP). The OB observers might have
used a more naïve approach, possibly causing a systematic shift. Werner Nahm hypo-
thetically suggests that they might have written down the first date on which they could
confirm that Venus had entered a new phase, either visibility or invisibility.13 If so, bad
weather would delay the observed phenomena, but his suggestion does not convince
me. An even more simple-minded approach based on actually observed first and last vis-
ibilities seems to me at least as plausible. With this approach, bad weather would have
symmetric effects, on average mutually canceling each other: it would not only delay
first visibility, but also lead to an earlier begin of invisibility. I shall keep all four main
chronologies as possibilities, since – as always with delicate data analytic arguments –
there is a non-negligible residual risk of error. But in my opinion it is small enough to
cast serious doubts on the middle chronologies.

Ǡ Calculation of crescents

Theoretical crescent visibility shall be determined according to a recipe described by
P. V. Neugebauer.14 The position of the moon is calculated at the time of sunset or sun-
rise (more precisely: when the center of the sun is in the mathematical horizon), ig-
noring parallax and refraction. For these calculations I used the programs by Chapront-
Touzé and Chapront (published in ǟǧǧǟ),15 but with improved values for the clock-time
correction ΔT and the lunar orbital acceleration.

11 Gasche et al. ǟǧǧǦ; Mebert ǠǞǟǞ; Huber ǠǞǞǞ; Hu-
ber ǠǞǟǟ.

12 See the row with the medians in Tab. Ǡ.Ǡ of Huber
ǠǞǞǞ.

13 Nahm ǠǞǟǢ.
14 P. V. Neugebauer ǟǧǠǧ.
15 Chapront-Touzé and Chapront ǟǧǧǟ.
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The lunar crescent then is supposed to be visible shortly after sunset if the altitudehmoon of the moon at sunset exceeds a certain value h (the thin lunar crescent is not
visible at the moment of sunset or sunrise itself). The critical value of h depends on the
difference Δ in azimuth between sun and moon and h has been determined empirically.
Thus the crescent is assumed to become visible on the first evening for which the altitude
difference

Δh = hmoon − h
is greater or equal zero (and to become invisible on the first morning for which this
difference is less or equal zero). The tables for the critical value h given by P. V. Neuge-
bauer,16 and shortly before by Langdon, Fotheringham, and Schoch,17 differ slightly.
Both tables go back to Carl Schoch. Identifying the tables by the initials of the authors,
I am following PVN, while Parker and Dubberstein18 followed the earlier LFS version.
See Tab. ǟ and Fig. ǟ.

This method for calculating crescent visibility admittedly is dated. Its advantage is
that it has been extensively tested against antique data (see the next section). There are
more modern approaches by Schaefer and others, but in the absence of testing it is not
known how well they perform with regard to observations made before the industrial
revolution. Of course, the critical altitude h is not meant as a sharp limit, and the fol-
lowing section gives empirical evidence for the size of its uncertainty range.

In ǟǧǦǠ I calculated all 33 000 lunar crescents for Babylon (44.5 E and 32.5 N) be-
tween the years −2456 and +212. The following statistics may be of some interest. I am
quoting the results of ǟǧǦǠ; more modern programs and different choices of the clock-
time correctionΔT cause only negligible minor variations. There were no ǠǦ-day months
at all, but there were 20 months with 31 days. We believe that the Babylonian months
never exceeded 30 days (even if the crescent did not appear), and therefore, a ǡǟst day
should be carried over to the next month. After carrying over the additional days of the
ǡǟ-day months, there were 15 491 Ǡǧ-day months (46.9%) and 17 509 ǡǞ-day months
(53.1%).

Note that the difference in longitude between sun and moon on average changes
by 12◦ in 24 hours. However, first visibility of the crescent depends not only on the
difference in longitude, but also on lunar latitude. On the day before theoretical first
visibility, Δh can be as low as −14.3◦, and on the day of first visibility, it can be as high
as 14.4◦. Between these two days, the value of Δh increases by at least 6.2◦ and by at most
14.5◦.

16 P. V. Neugebauer ǟǧǠǧ, Tab. E Ǡǟ.
17 Langdon, Fotheringham, and Schoch ǟǧǠǦ, Tab. K.

18 Parker and Dubberstein ǟǧǣǤ.
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The Ǡǧ- and ǡǞ-day months follow each other in a quite irregular and not easily
predictable sequence, but which is not really random (i.e. there are discernible differ-
ences between this sequence and one obtained by tossing a biased coin). I checked it for

|Δ| h
PVN LFS

0 10.4◦ 10.7◦

1 10.4 10.7

2 10.3 10.6

3 10.2 10.5

4 10.1 10.4

5 10.0 10.3

6 9.8 10.1

7 9.7 10.0

8 9.5 9.8

9 9.4 9.6

10 9.3 9.4

11 9.1 9.1

12 8.9 8.8

13 8.6 8.4

14 8.3 8.0

15 8.0 7.6

16 7.7 7.3

17 7.4 7.0

18 7.0 6.7

19 6.6 6.3

20 6.2

21 5.7

22 5.2

23 4.8

Tab. ǟ Critical altitudes h for
crescent visibility, in dependence
of the azimuth difference |Δ|. The
values are those of P. V. Neuge-
bauer (PVN), and of Langdon,
Fotheringham, and Schoch (LFS),
respectively.
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Fig. ǟ Crescent visibility. Shown are the theoretical visibility curve of Tab. ǟ, PVN (solid), the gray zone (±1◦),
the sun (at the coordinate origin), and the thin lunar crescent (with the earth light). The figure is to scale.

periodicities by comparing month-lengths spaced up to 3000 months apart. The most
pronounced period is 669 months or 54 years: month-lengths spaced 669 months apart
agree in 81% of the cases. Note that 669 synodic months, or 54 years, is a well-known
eclipse period (the so-called exeligmos). In particular, there are fewer and shorter runs
(sequences of consecutive months of equal length) than in a truly random sequence.
I found 410 runs of three consecutive Ǡǧ-day months, and 100 runs of five consecutive
ǡǞ-day months; longer runs did not occur.

ǡ The Late Babylonian evidence: astronomical texts

In preparation to the publication of Astronomical Dating of Babylon I and Ur III in ǟǧǦǠ,19

I had collected 602 lunar crescents in Late Babylonian observational astronomical texts.
These are observations of the crescent and as a rule are accompanied by a measured
time interval between sunset and moonset. Most of the texts are dated between 500 and

19 Huber, Sachs, et al. ǟǧǦǠ.
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150 BC. I had excluded calculated crescent data, that is crescents explicitly designated
as ‘not observed’ (NU PAP), therefore the agreement of that data base with modern cal-
culation may be better than the agreement to be expected from genuine observations.
On the other hand, one should be aware that the ancient astronomers occasionally may
have substituted educated guesses (based on observations shortly before or after the crit-
ical evening) or predictions when observational conditions were poor, without always
stating the fact.

In the time when those astronomical texts were written the Babylonians had fairly
accurate prediction methods. Between 641 and 591 BC they had developed methods for
predicting the so-called Lunar Six (time differences between the rising and setting of
sun and moon, near new and full moons).20 Their methods for predicting the Lunar
Six and the beginning of the month were based on observations made one Saros cycle,
or 18 years, earlier; they have been elucidated by Brack-Bernsen.21

This observational material then was compared with modern calculations based
on the PVN values of Tab. ǟ; it was not deemed extensive enough to model seasonal
dependencies. Among the 602 crescents, there are 34, or 5.6%, discrepancies between
observation and calculation. Of those, 30 correspond to marginal visibility conditions
with |Δh| < 1.0◦, that is to cases where the altitude of the moon was within±1◦ of the
theoretical curve deciding visibility, see Fig. ǟ. Among the remaining four observations,
one is a clear gross error, and two come from the same, poorly preserved tablet. This
residual error rate is remarkably small. Note that according to modern experience, when
data are recorded by hand, in the absence of proof reading gross error rates in the range
between 1% and 10% are quite common.22 I therefore assume that there was careful
proof reading. Given the low residual error rate, observations with |Δh| ⩾ 1.0◦, rather
than being genuine observations that are less accurate than usual, just as likely either
are gross scribal errors, or evidence for wrong modern dating of the tablet.

If we disregard gross errors, we thus have 598 observations, among which 30, or
5.0%, disagree with modern calculation. This disagreement rate is a statistical estimate
and as such, assuming an underlying binomial distribution, is affected by a standard
error of 0.9% percentage points. It is advisable to keep this statistical uncertainty in
mind – with a similar but independent data set we might just as well have obtained
a miss rate near 4% or 6% – but for the subsequent order-of-magnitude calculations we
shall operate with 5%. Since a month-length depends on two crescents, the 5% miss rate
for crescents translates into an approximate miss rate of 10% for month-lengths.

The following Tab. Ǡ gives the empirical distribution of sighted and not sighted
crescents with calculated |Δh| < 1.0.

20 Huber and Steele ǠǞǞǥ.
21 Brack-Bernsen ǠǞǟǟ.

22 See Hampel et al. ǟǧǦǤ, Ǡǣ–ǠǦ.
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not sighted Δh sighted

44

××××××××× −0.9

15

××××× −0.8

××× −0.7 ×××

××× −0.6 ××

××××××× −0.5 ×

×××××× −0.4 ×××

×××× −0.3

××× −0.2 ×

×××× −0.1 ××××

−0.0 ×

15

0.0 ××

38

× 0.1 ×××××××

× 0.2 ×

× 0.3 ×××

×× 0.4 ××××××

××× 0.5 ×××××

××× 0.6 ××

× 0.7 ×××

×× 0.8 ××

× 0.9 ×××××××

Tab. Ǡ Sighted and not sighted
crescents in the Late Babylonian
observational texts with the cal-
culated value of |Δh| < 1.0 (from
Huber, Sachs, et al. ǟǧǦǠ, Ǡǥ).

Based on this table I had tentatively proposed a probability model that disregarded gross
errors but otherwise represented the observational astronomical data fairly well, namely:

– if Δh < −1, the crescent is never seen;
– if −1 ⩽ Δh ⩽ 1, the crescent is seen with probability 1+Δh

2 ;
– if Δh > 1, the crescent is always seen.

Thus, near Δh = 0 the chance of seeing the crescent is roughly 50%, and for Δh = −0.8
the probability of sighting the crescent drops to 10%. By averaging over the intervals
we obtain that for −1 ⩽ Δh ⩽ 0 the crescent is not sighted with probability 0.75 and
sighted with probability 0.25, while for 0 ⩽ Δh ⩽ 1 it is not sighted with probabil-
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ity 0.25 and sighted with probability 0.75. These theoretical 3 : 1 ratios are close to the
empirical ratios 44 : 15 and 15 : 38 of Tab. Ǡ.

Note that for genuine observations the situation is not symmetric: if a text claims
that the crescent had been seen, but calculation gives a negative Δh ⩽ −1.0◦, we are
practically guaranteed to have a gross scribal error or a wrong date. But if the crescent
had not been seen with Δh ⩾ 1.0◦, it is possible that the sighting had failed because of
poor atmospheric conditions. However, this asymmetry does not manifest itself in the
Late Babylonian data and therefore was not modeled.

On the basis of a long sequence of 33 000 calculated crescents (with Δh values
rounded to the nearest multiple of 0.1◦), the above probability model yields that the
crescents would be observed one day early or late in 2.3% of the cases, respectively, re-
sulting in a calculated miss rate of 4.6%. This is well within the statistical uncertainty of
the observed miss rate, but for the model calculations of Sections ǥ and Ǧ, I preferred to
increase the width ±d of the gray zone from ±1.0◦ to ±1.1◦, in order to obtain a miss
rate of 5.1%, closer to the observed value.

Ǣ The Neo-Babylonian evidence: administrative texts

Non-astronomical texts – mostly administrative texts from between 650 and 450 BC,
dated on day 30, where such a date would appear to imply that the month had 30 days
– have a substantially higher disagreement rate against calculation. In ǟǧǦǠ we found
153 suitable texts, with a disagreement rate of 50/153= 32.7% for month-lengths.23 This
translates into about 17% with regard to crescents, and there are about 8% cases with
|Δh| ⩾ 1.0◦.24 It is difficult to separate the causes of these discrepancies into careless
dating, less reliable observations made by non-astronomers, and gross scribal errors. I
now repeated the calculations with newer programs and the best currently available ΔT -
values for the Neo- and Late-Babylonian period.25 The results were practically identical.

The correct chronology with 50 misses does not give the best possible fit. Among
20 000 alignments of the 153 observed month-lengths along a calculated sequence there
were 16, or 0.08% alignments with 50 or fewer misses. The best fit had 46 misses, and
fits with 50 and 49 misses were found 669 months, or 54 years, before and after the true
date, respectively (remember the 669 months lunar period!). This means that a randomly
chosen (wrong) alignment has a chance of 0.08% of hitting an equally good or better
agreement than the true one. And there are good chances to find an equally good fit
exactly 669 months or 54 years before or after the true one.

23 Huber, Sachs, et al. ǟǧǦǠ, ǠǦ–Ǡǧ.
24 Huber, Sachs, et al. ǟǧǦǠ, ǠǦ–Ǡǧ.

25 The STǦǠf formula for ΔT of Huber and De Meis
ǠǞǞǢ, Ǡǣ.

Ǡǧ



̢̠̤̕̕ ̢̘̥̒̕

Reassuringly, we can conclude that the agreement of the recorded ǡǞ-day months
with the calculated ǡǞ-day months is significantly better for the true chronology than for
a wrong chronology. However, even with 153 recorded month-lengths the agreement
ordinarily is not good enough to permit independent dating in the absence of other
evidence, that is, unless we can narrow down the candidate chronologies to a few precise
years. A detailed quantitative discussion is required.

Theoretical arguments involving the miss rates of wrong alignments are based on
astronomical theory, namely on the 29.53 days length of the synodic month and the
resulting miss rate of 47% for randomly aligned ǡǞ-day months. The binomial distribu-
tion gives a good approximation to the distribution of empirically observed miss rates,
see Fig. Ǡ.

Arguments involving the miss rate of the correct chronology are more delicate, quite
apart from the question whether the miss rates for NB and OB times were the same. For
true alignments this miss rate also follows a binomial distribution, but with a lower value
of p, see Fig. ǥ of Section Ǧ. For arguments relying on the miss rates for true alignments
one should keep in mind that the disagreement rate of p = 50/153 = 32.7% between
observed and calculated month-lengths is a mere estimate, and as such is affected by a
standard error of

√p(1−p)/n, or about ǡ.Ǧ percentage points.
Since the observed miss count is a random quantity, some luck is involved. Let us

fix the idea by arbitrarily assuming that the true disagreement rate is 32.7%, and that
we are trying to find a date on the basis of an independent new sample of 153 month-
lengths. Note that this is a much larger sample than we can hope for in the case of
Ammis

˙
aduqa+Ammiditana. Then for a correct alignment the chances are 27% that

the observed miss count is less or equal 46, and also 27% that it is greater or equal 54.
With a correct alignment and good luck, we perhaps might have obtained 46 misses
and a miss rate of 30.0%, with bad luck perhaps 54 misses and a miss rate of 35.3%.
With a wrong chronology the expected number of misses is 0.47×153 = 72, and the
binomial probability of obtaining 46 or fewer misses is 0.0000145, and of obtaining 54
or fewer misses is 0.00224.

Assume now that we desire to fix the true chronology with an error probability
of 1%. Then the probability that the best of 690 random trials with wrong alignments
achieves 46 or fewer misses is approximately 1% (≈ 690 × 0.0000145). In such a lucky
case, picking the correct date based solely on month-lengths is eminently feasible – in a
line-up of 690 candidates we pick the true one with 99% chance. On the other hand, if
we are unlucky, the probability that the best of 4 random trials with wrong alignments
achieves 54 or fewer misses is about 1% (≈ 4× 0.00224), which would be just sufficient
to pick the correct chronology in an Ammis

˙
aduqa-like case with 99% chance in a line-up

of four precisely fixed candidate chronologies.
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Binomial and empirical, n=153, p=0.472

nmiss
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Fig. Ǡ Comparison between the binomial distribution (n= 153, p= 0.472, blue) and the empirical frequencies
obtained from ǠǞ ǞǞǞ alignments of the Late Babylonian data (red). (The LB data contain 149 ǡǞ-day months and
4 Ǡǧ-day months, and the p of the binomial distribution was adjusted accordingly from 0.47 to 0.472.)

A detailed discussion of the NB material follows. The 153 texts contain 4 attested Ǡǧ-
day months, 3 of which agree with calculation, and one calculates as 30 days, possibly
shortened by marginal calculated visibility (Δh = 0.2◦) at the beginning of the month.
Tab. ǡ lists the results of a comparison of the remaining 49 months that calculate as
having 29 days but where the texts have a day 30. This is an extract from Astronomical
Dating of Babylon I and Ur III,26 but re-calculated with newer programs.

We note that of those 49 months 14 have marginal visibilities (−1.1 ⩽ Δh ⩽ 0) at
the beginning of the month, and 14 have marginal visibilities at the end of the month
(0 ⩽ Δh ⩽ 1.1). The former may lengthen the observed month at the beginning, the
latter at the end. One month has marginal conditions both at the beginning and the
end. For the remaining 22 months the mismatch to calculation cannot be explained
by marginal visibility; for them, we have 1.6 ⩽ Δh ⩽ 6.8 at the end of the month.
Incidentally, the big list of 33 000 calculated crescents shows that at the end of calculated
Ǡǧ-day months Δh ranges from 0 to 10.9.

26 Huber, Sachs, et al. ǟǧǦǠ, ǣǟ–ǣǣ.
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Syzygy
Number

begin of month end of month

Δh before
1st visibility

Δh at 1st
visibility

Δh before
1st visibility

Δh at 1st
visibility

5537 −6.2 3.6 −9.1 .0

5925 −4.0 6.8 −10.9 .1

5827 −4.2 6.7 −11.2 .1

5600 −.8 7.7 −7.4 .2

5610 −5.6 4.7 −7.8 .2

5917 −7.0 5.7 −10.6 .3

5687 −3.9 6.0 −9.1 .3

5315 −6.1 3.6 −8.6 .4

5722 −6.5 6.1 −10.4 .7

5854 −3.8 7.2 −9.6 .8

11235 −1.4 9.4 −8.6 .9

9035 −3.8 6.3 −8.1 .9

5597 −7.0 4.9 −8.4 .9

6219 −3.4 5.5 −7.8 1.0

5683 −.6 10.3 −7.3 1.5

4726 −3.1 8.1 −10.0 1.6

5781 −2.9 9.5 −9.1 1.7

5363 −1.2 8.2 −5.4 2.0

5766 −5.1 8.1 −10.6 2.0

5045 −1.0 8.3 −7.0 2.2

5446 −4.3 7.9 −8.4 2.2

5748 −5.3 5.9 −8.1 2.7

5570 −5.2 8.5 −10.0 2.8

5774 −1.8 7.6 −6.6 3.1

5802 −4.3 8.1 −9.9 3.4

5530 −1.4 10.7 −8.2 3.5

5526 −4.3 7.0 −7.1 3.6

(continued on next page)
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(continued from previous page)

Syzygy
Number

begin of month end of month

Δh before
1st visibility

Δh at 1st
visibility

Δh before
1st visibility

Δh at 1st
visibility

5877 −4.7 9.0 −9.5 3.6

5678 −4.8 8.7 −9.5 4.3

5327 −.2 9.3 −4.3 4.4

6001 −4.9 9.3 −9.6 4.4

4996 −5.4 7.8 −9.1 4.7

5850 −2.2 10.5 −7.2 5.0

5334 −1.5 11.6 −7.3 5.1

5890 −4.4 9.6 −8.1 5.3

6377 −.0 12.7 −6.3 5.3

5405 −.6 11.6 −6.1 5.4

5329 −.0 10.3 −5.4 5.5

5499 −2.0 11.7 −6.7 5.5

5903 −4.0 9.9 −7.0 6.1

6194 −2.5 9.6 −5.3 6.4

5050 −1.3 11.8 −6.4 6.8

5654 −.2 13.3 −5.5 7.4

5863 −.8 13.0 −5.5 7.7

5899 −.2 12.1 −4.2 8.5

5008 −1.1 11.6 −4.5 8.7

5677 −.3 12.5 −4.8 8.7

6392 −.1 13.7 −3.5 9.0

5442 −.8 13.2 −4.8 9.5

Tab. ǡ Neo-Babylonian data:
49 texts dated on day 30, whereas
calculation indicates a Ǡǧ-day
month. The table is sorted accord-
ing to the calculated Δh at 1st
visibility at the end of the month.
Where a mismatch cannot be ex-
plained as a gray-zone effect, theΔh value is shaded.

I am not sure how Tab. ǡ is to be interpreted. Clearly, there is a crowding of values in
the marginal visibility zones, both at the beginning and the end of the month. For the
remaining 22 months, or 45% of the total, at the end of the month Δh is fairly evenly
distributed over the range between 1.6 and 6.8, and thus the mismatch cannot simply
be explained by expanding the marginal visibility zones. I believe the most plausible
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suggestion is that between 40% and 50% of the day-ǡǞ dates are ‘overhang’ dates, on
which a scribe wrote day 30 instead of day 1 of the following month. In these cases
the following day would be day 2 of the new month. I shall elaborate on this idea in
Section ǥ.

ǣ On the discriminatory power of month-lengths

I shall concentrate on methodological aspects, but shall illustrate them by discussing in
detail two concrete data collections that involve crucial aspects and difficulties: month-
lengths (ǟ) from the reign of Ammis

˙
aduqa, and (Ǡ) from the reign of Ammiditana. An

early draft had contained also a detailed discussion of (ǡ) the Hammurabi-Samsuiluna
and (Ǣ) the Ur III evidence, both being less conclusive, but for reasons of space I now
give only brief summaries. To avoid over-burdening the discussion, I shall relegate most
technical details to Sections ǥ, Ǧ, and ǧ below, and to Section ǟǞ, the Appendix listing
the data collections.

A perennial methodological problem is that our pool of month-length data may
be too small to guarantee a decision. Even in the absence of grosser errors, such as er-
roneous intercalations, the unavoidable problem is the randomness of the miss counts.
With some luck, the correct chronology may give a lower than expected miss count and
force a decision. But if it accidentally gives a high miss count, the situation may remain
undecided. With the miss counts of wrong chronologies opposite problems apply. More
new data will not necessarily sharpen the decision – extreme counts will tend to regress
toward the average (Galton’s law of ‘regression to mediocrity’). For example, in the case
of Ammis

˙
aduqa to be discussed in Section ǣ.ǟ, addition of 5 more month-lengths re-

sulted in a poorer separation between the putative right and wrong alignments. In or-
der to illustrate the intrinsic variability of small sample statistics – and to raise a warning
signal against the temptation of over-interpretation – I shall present the analysis of the
Ammis

˙
aduqa data both in terms of the smaller earlier and the increased later sets. Note

that in critical cases elimination of a single mismatch by a minute change of ΔT can
dramatically lower the P-values (minimum rejection levels), see Section ǣ.Ǡ.ǟ.

Repeatedly, doubts have been raised whether the Old Babylonian month-lengths,
i.e. month-lengths derived from texts dated on day 30, obey laws comparable to those of
the Neo-Babylonian ones, in particular whether the NB miss rate of 33% is applicable.
If it comes to the worst, the miss counts for the correct OB chronology might be no
better than for wrong ones, and then the month-lengths would be useless for dating
purposes. But at least in principle – that is, if the sample size is large enough – the
month-length data can be used to settle this question in a methodological clean fashion,
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namely by testing whether one of the four main Venus chronologies gives a better fit than
the best of four random wrong chronologies. Technically, this means that we should
show by a statistical test that the best of the four miss counts is significantly better than
the best of four random draws from a binomial distribution corresponding to wrong
chronologies. If successful, this test (which is based only on the theoretically secure ratep=0.47) would not only establish that one of the four chronologies is correct. It would
also imply correctness of the singled-out best chronology and wrongness of the other
three, and that the miss rate for a correct chronology – while not necessarily equal to
the NB value – is well below that for a wrong chronology also for OB data.

But what sample size would we need? The Ammis
˙
aduqa sample sizes of 27 or 32

are not good enough. Assuming that the miss rate for correct chronologies is close to
the NB value of 33%, I have estimated (with the help of some rough order-of-magnitude
calculations with the binomial distribution) that one would need 60 or more month-
lengths for such a test to have a fair chance of being successful. Actually, with some
luck we shall squeeze by with a total of 49 data by combining the Ammis

˙
aduqa and

Ammiditana samples in Section ǣ.Ǡ.ǟ.

ǣ.ǟ Case ǟ: Ammis
˙
aduqa

This subsection is concerned with the question whether and when the best fitting chronol-
ogy can be declared being the correct chronology. It also illustrates that more data do
not necessarily improve the discriminatory power.

In the case of the reign of Ammis
˙
aduqa we have four distinct, precisely fixed main

chronological possibilities: Ammis
˙
aduqa year 1= −1701, −1645, −1637, or −1581. For

each of these four possibilities the syzygy numbers of the months from year 1 month VII
to year 18 month VI are astronomically fixed by the Venus data. If Ammis

˙
aduqa year 1

is a normal year, they imply that month I of that year has the syzygy numbers −8666,
−7974, −7875, or −7183, respectively.27

I first shall discuss the set of 27 day-ǡǞ dates available by ǠǞǟǞ. Fig. ǡ plots the bi-
nomial distributions corresponding to p= 0.33 on the left hand side (the miss rate cor-
responding to the Neo-Babylonian control material for a correct chronology) and top= 0.47 on the right hand side (the theoretical rate for random wrong chronologies).
There is considerable overlap between the two distributions. For a correct chronology
we expect a miss count of 8.9, with a standard deviation of

√n p (1 − p) = 2.4. For
a wrong chronology the expected count is 12.7, and for the best of four wrong chronolo-
gies the expected count is 10.0.

27 These numbers continue the syzygy count of
Goldstine ǟǧǥǡ backward to the Ǡnd and ǡrd
millennium.
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Binomial (p=0.33, p=0.47), n=27

nmiss
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Fig. ǡ Ammis
˙
aduqa data (set available in ǠǞǟǞ). Binomial distributions for p= 0.33 and p= 0.47, n= 27. The

vertical lines indicate the number of misses obtained for the Ǣ main chronologies with the Ammis
˙
aduqa data:

−1701: 8, −1645: 16, −1637: 15, −1581: 13.

For the four main chronologies we obtain miss counts of 8, 16, 15, and 13 respectively,
see Fig. ǡ. We expect that one of the four main chronologies is correct and is drawn from
the left-hand distribution, while the other three are wrong and are drawn from the right-
hand distribution. The figure clearly is consonant with this assumption; it suggests that
−1701 is correct, and that the other three are unlikely in different degrees. Actually, the
miss count for −1701 is below the expected value for a correct chronology by one unit,
and the other three counts are all above the expected value for a wrong chronology.

While this data set clearly favors the −1701 chronology, the sample size is not large
enough to force a decision in its favor. The probability that a random wrong chronology
yields 8 or fewer misses is 0.052. But since we have picked the −1701 chronology not for
extraneous reasons, but rather because it was the best of four, we should consider the
probability that the best of four random wrong chronologies yields 8 or fewer misses; this
probability is 1 − (1 − 0.052)4 = 0.19.
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Through a Bayesian approach we can quantify the intuitive impression that −1701
is best and −1645 worst by assigning equal prior probabilities to the four chronologies.
Then, their posterior probabilities are proportional to

( p (1 − q)
(1 − p) q

)k

where p = 0.33, q = 0.47, and k is the number of misses. For the ǠǞǟǞ data set they
calculate as:

−1701: 0.927, −1645: 0.008, −1637: 0.015, −1581: 0.049.

Note that if all k are increased by the same constant, the posterior probabilities stay the
same – this means that the Bayesian approach ignores the absolute quality of the four fits
and is in particular unable to tell you whether or not all four are wrong. A disadvantage
of all Bayesian approaches is that they have to rely on the Neo-Babylonian value of p.

By ǠǞǟǡ, 5 more day-ǡǞ dates had become available. The result is depicted in Fig. Ǣ.
The −1701 chronology still is ahead, but its miss count of 12 now exceeds the expected
value of 10.6 for a correct chronology by one unit, while the other three are at or above
the expected value of 15.0 for a wrong chronology.

The ǠǞǟǡ Ammis
˙
aduqa data set is less able to assert correctness of the −1701 chronol-

ogy than the ǠǞǟǞ set. While with the earlier set the lowest miss count was one unit
below the expected value for a correct chronology, with the later set it is one unit above
the expected value, and the probability that a random wrong chronology yields 12 or
fewer misses is 0.18. The miss count of 12 of the High Chronology lies between the ex-
pected miss count for a correct chronology (10.6) and the count expected for the best of
four wrong chronologies (12.2). All these number lie well within statistical variability;
note that the standard deviation

√n p (1 − p) = 2.7 of the miss count for the cor-
rect chronology exceeds the difference between the last two numbers. (By the way, the
standard deviation of the miss count of the best of four wrong chronologies is 2.0.)

The evidence does not suffice to establish correctness of the High chronology, but if
the miss rate of 0.33 of the NB data is even approximately applicable, we can confidently
(with better than 99% confidence) reject correctness of the traditional −1645 Middle
chronology: the P-values are 0.45% for the ǠǞǟǞ set and 0.19% for the ǠǞǟǡ set.

For the ǠǞǟǡ set the posterior probabilities calculate as

−1701: 0.736, −1645: 0.012, −1637: 0.126, −1581: 0.126.

We summarize: the Ammis
˙
aduqa month-length evidence points in favor of the High

chronology and disfavors the −1645 chronology.
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Binomial (p=0.33, p=0.47), n=32
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Fig. Ǣ Ammis
˙
aduqa data (set available in ǠǞǟǡ). Binomial distributions for p= 0.33 and p= 0.47, n= 32. The

vertical lines indicate the number of misses obtained for the Ǣ main chronologies with the Ammis
˙
aduqa data:

−1701: 12, −1645: 19, −1637: 15, −1581: 15.

ǣ.Ǡ Case Ǡ: Ammiditana

In the case of Ammiditana, the king of Babylon immediately before Ammis
˙
aduqa, we

have 13 (set available since ǟǧǦǠ), or 17 (set available in ǠǞǟǡ) usable attestations of ǡǞ-
day dates (from Ammiditana years 24 to 36). The problem here is that the positions of
the intercalary months are not fixed by Venus observations as in the case of Ammis

˙
aduqa.

Specifically, the question is whether the Ammiditana segment joins snugly in front of
Ammis

˙
aduqa. Note that for the 7 years between Ammiditana 34 and Ammis

˙
aduqa 3

only a single intercalation is attested (see Section ǟǞ.Ǡ in the Appendix of this article).
So we should consider the possibility that there is an unattested intercalation near the
boundary (for example a XII2 in Ammiditana year 36, or a VI2 in Ammis

˙
aduqa year 1;

these two choices shift all currently attested Ammiditana month-lengths by one month,
but do not interfere with their relative distances). I think it is advisable, if not mandatory,
to take the uncertainty into account and to consider the possibility of an additional
intercalation. In Tabs. Ǣ–ǣ, the results are identified by ‘+0’ without, by ‘+1’ with such
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+0 +0 +1 +1 min min

Ammis
˙
aduqa

year 1
Syz.no. of
year 1

As
˙

Ad Ad+As
˙

Ad Ad+As
˙

Ad Ad+As
˙

No. of months 27 13 40 13 40 13 40

High −1701 −8666 8 8 16 2 10 2 10

High Middle −1645 −7974 16 5 21 8 24 5 21

Low Middle −1637 −7875 15 8 23 11 26 8 23

Low −1581 −7183 13 9 22 5 18 5 18

Tab. Ǣ Counts of misses for Ammis
˙
aduqa and Ammiditana (sets available in ǠǞǟǞ).

an additional intercalation, and ‘min’ gives the lower of the two counts. With ‘+1’ the
Ammiditana block as a whole is shifted one month.

When considered by themselves, the Ammiditana data lead to similar conclusions
as the Ammis

˙
aduqa data: both favor the High chronology, see Tabs. Ǣ–ǣ, and compare

Figs. ǡ–Ǣ with Fig. ǣ. We may treat the two data sets as two independent witnesses.
They are concordant, but not quite conclusive when taken separately. There are more
promising approaches, namely by combining the two sets. I shall discuss three possible
approaches.

Firstly, we may form a working hypothesis on the basis of one set and then test it on
the basis of the other. Or secondly, we can pool the data, forget about the evidence of the
components and proceed on the basis of the joined set. A third possibility is to combine
the evidence from the different sets by Bayesian methods. To some extent the choice of
method is a matter of taste. Personally, I think that in our case the first approach, testing
a working hypothesis, is the cleanest (and clearest). Others might better like the third,
Bayesian approach.

The approaches are complementary. Statistical tests can assess absolute quality, but
have difficulties measuring relative merits, while with Bayesian approaches the opposite
applies. In our particular case the first approach is suitable for establishing correctness
of a chronology, the second for establishing wrongness of selected chronologies, and the
third for assigning relative probabilities.

From now on we shall concentrate on the ǠǞǟǡ data set. The joined Ad+As
˙

data
of Tab. ǣ suggest that in the +0 column all four alignments are wrong: none of the
counts is below the value 23.0 expected for a wrong chronology, and all exceed the
value 16.2 expected for a correct chronology by more than twice their own standard
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+0 +0 +1 +1 min min

Ammis
˙
aduqa

year 1
Syz.no. of
year 1

As
˙

Ad Ad+As
˙

Ad Ad+As
˙

Ad Ad+As
˙

No. of months 32 17 49 17 49 17 49

High −1701 −8666 12 11 23 3 15 3 15

High Middle −1645 −7974 19 6 25 10 29 6 25

Low Middle −1637 −7875 15 9 24 13 28 9 24

Low −1581 −7183 15 10 25 7 22 7 22

Expected
number of
misses
(± standard
deviation)

correct 10.6
±2.7

5.6
±1.9

16.2
±3.3

5.6
±1.9

16.2
±3.3

wrong 15.0
±2.8

8.0
±2.1

23.0
±3.5

8.0
±2.1

23.0
±3.5

best of 4 wrong 12.2
±2.0

5.9
±1.4

19.4
±2.4

5.9
±1.4

19.4
±2.4

Tab. ǣ Counts of misses for Ammis
˙
aduqa and Ammiditana (sets available in ǠǞǟǡ).

deviation of 3.3. Thus, either a snug joining of the two data sets (+0) is wrong, or all
four chronologies are wrong, or OB month-lengths are worthless for dating purposes.

On the other hand, in the +1 column the miss-counts match the assumption that
we have one correct and three wrong chronologies. The count (15) for the HC turns out
even better than what we would expect (16.2) for the correct chronology, and the counts
for the Middle chronologies are devastatingly poor.

If indeed one of the four chronologies is correct, as is generally assumed, and if
OB month-length data can provide valid evidence, a comparison between the +0 and
+1 columns thus furnishes strong arguments in favor of an additional intercalation, and
in favor of the High chronology, as well as against the Middle chronologies.

Fig. ǣ is analogous to Figs. ǡ–Ǣ. It plots the binomial distributions corresponding top = 0.33 (the miss rate corresponding to the Neo-Babylonian control material for a cor-
rect chronology) and to p = 0.47 (the theoretical rate for random wrong chronologies),
and in addition it also shows the distribution of the counts for the better of two random
draws from the right hand distribution. Correspondingly, the vertical lines indicate the
better of the two Ammiditana counts (without and with the additional intercalation).
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Binomial (p=0.33, p=0.47 (best of 2), p=0.47), n=17

nmiss
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Fig. ǣ Ammiditana data (set available in ǠǞǟǡ), n = 17. Leftmost: binomial distribution for p = 0.33 (correct
chronology); rightmost: for p = 0.47 (wrong chronology). In between the two, also the distribution of the best
of two wrong chronologies is shown. The vertical lines indicate the number of misses obtained for the Ǣ main
chronologies with the Ammiditana data. The lines correspond to the numbers obtained for the best of two fits
(without or with the additional intercalation): −1701: 3, −1645: 6, −1637: 9, −1581: 7.

Back in ǟǧǦǠ, for the −1701 chronology and the 13 month-lengths then available I had
obtained a single miss when assuming an additional intercalation. For the same data
the newer programs gave two misses. It turns out that the uncertainty of ΔT is such
that for one of the Ammiditana month-lengths the decision between 29 and 30 days is
ambiguous. The newer programs, which allow to vary ΔT , show not only that with the
default ΔT the miss counts correspond to a local maximum for both Ammis

˙
aduqa and

Ammiditana, but also that if ΔT is lowered by merely 3 minutes (that is, if c is changed
from 32.50 to 32.35), the Ammiditana miss counts become 1 for the ǟǧǦǠ/ǠǞǟǞ set, 2 for
the ǠǞǟǡ set. See Section ǧ and Figs. Ǧ, ǧ, ǟǞ, ǟǟ, and ǟǠ.

ǣ.Ǡ.ǟ Ammis
˙
aduqa results used as a working hypothesis

The Ammis
˙
aduqa data – both the Figs. ǡ–Ǣ, and the Bayesian posterior probabilities –

suggested that the HC is the correct chronology, but they did not suffice to establish it
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on the 5% level. We now use the HC as our working hypothesis, and we have to test the
hypothesis that HC is wrong with the help of the Ammiditana data.

We take the ǠǞǟǡ month-length data and the miss counts of Tab. ǣ. If the HC is
wrong, the Ammiditana miss count is distributed like a draw from a binomial distribu-
tion with n= 17 and the parameter p= 0.47, whether or not we assume the presence
of an additional intercalation. The smaller of the two miss counts (without and with
the additional intercalation) then is distributed like the smaller of two draws from this
binomial. With the default ΔT , the smaller of the observed miss counts is 3 (see Tab. ǣ),
and the probability of achieving ⩽3 misses is 2.4%. If we decrease ΔT by 3 minutes, the
Ammiditana miss count for −1701 is decreased by 1 unit, and the minimum rejection
level is reduced from 2.4% to 0.50%. Calculations with any of the other chronologies
no longer are relevant. In other words, we reject wrongness of the HC on a level below
3%, possibly below 1%.

A possible criticism that might be raised against these calculations is that we draw
pairs of chronologies spaced by one month, and so the draws are not quite random.
But an empirical test (comparing pair-wise random draws with single draws from the
calculated sequence of month-lengths) shows that the approximation nevertheless is ex-
cellent.

We emphasize that this test relies only on the secure rate of p=0.47. In addition to
confirming that one of the four chronologies is correct, namely the HC, it simultane-
ously implies that the Old-Babylonian miss rate for a correct chronology is substantially
below 47%, and that the other three chronologies are wrong.

We summarize that we can confirm the HC with better than 95% confidence, and if we are
willing to lower ΔT by 3 minutes against the arbitrarily assumed default formula, it is confirmed
even with over 99% confidence.

ǣ.Ǡ.Ǡ Joining the Ammis
˙
aduqa and Ammiditana data

Alternatively, we may join the two data sets. The counts are shown in Tabs. Ǣ–ǣ, and the
situation is depicted in Fig. Ǥ. We again expect that one of the four main chronologies
is correct and is drawn from the left-hand distribution (p=0.33), while the other three
are wrong and are drawn from the rightmost distribution (p = 0.47). Since for each
chronology we again are considering the better matching of two possibilities, the vertical
lines indicate the lower value of the two counts, and the distribution of the lesser of two
independent draws from the right-hand binomial (p= 0.47) is depicted in the middle.
There is considerable overlap between the distributions, but the figure clearly suggests
that −1701 is the correct chronology and that both middle two chronologies are wrong.
This can be quantified by calculating minimum rejection levels.
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Binomial (p=0.33, p=0.47 (best of 2), p=0.47), n=49

nmiss
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Fig. Ǥ Ammiditana+Ammis
˙
aduqa data (set available in ǠǞǟǡ). Binomial distributions for p = 0.33 (correct

chronology) and p = 0.47 (wrong chronology); n = 49. In between the two, also the distribution of the best
of two wrong chronologies is shown. The vertical lines indicate the number of misses obtained for the Ǣ main
chronologies with the combined Ammis

˙
aduqa-Ammiditana data. The lines correspond to the numbers obtained

for the best of two fits (that is without or with the additional intercalation): −1701: 15, −1645: 25, −1637: 24,
−1581: 22.

We perform statistical tests between the hypothesis H (chronology correct, p= 0.33)
and the alternative A (chronology wrong, p= 0.47). Let x be the number of misses and
assume that the binomial distributions B(n, p), with the above values of p, and n= 49,
give adequate approximations for the probability distribution of the miss counts.

(ǟ) Test A against H
In this case, we have to test A (wrongness of the best fitting chronology). That is, we
ought to check whether the best alignment we had found (among 4 chronologies and 2
intercalation patterns for each) fits significantly better than what can be expected from
the best of 8 randomly chosen wrong alignments. We run into similar sample size prob-
lems as above with the Ammis

˙
aduqa data, but the rejection level (the probability that

the best of four random wrong chronologies yields 8 or fewer misses) is somewhat reduced,
namely to 11.1% for the ǠǞǟǡ set. This number is conservative: the (somewhat arbitrary
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default) formula for ΔT yields a local maximum of the counts (see Figs. ǟǟ–ǟǠ of Sec-
tion ǧ), and decreasing ΔT by merely 3 minutes would lower the counts by 1 unit and
lower the rejection level from 11.1% to 5.2%. These tests rely only on the theoretically
secure rate p= 0.47.

(Ǡ) Test H against A
This test is included here to illustrate the ancillary use of the 33% rate to add evidence
that a particular chronology is wrong. Assume that you reject H (correctness of the
chronology) if x⩾ k, and thereby accept A (wrongness of the chronology). Then, the
probability of falsely rejectingH can be calculated from the binomial distribution appro-
priate for H (p= 0.33). For example, with the ǠǞǟǡ data set for the Low Middle chronol-
ogy we have 24 misses for +0 and 28 for +1, and we obtain for the probability of falsely
rejecting correctness of that chronology 1.47% or 0.04%, respectively. We stay on the
conservative side if we pick the lower miss count and the higher P-value (if we had as-
signed equal probabilities to +0 and +1, we would have taken the average of the twoP-values). Thus, we obtain the results seen in Tab. Ǥ.

Chronology 2013; n = 49 P (x ⩾ k)

−1645 k= 25 0.68%

−1637 k= 24 1.47%

−1581 k= 22 5.51%

Tab. Ǥ Ammiditana +

Ammis
˙
aduqa. Error probability

when rejecting correctness of
a chronology.

Thus, for each of the two middle chronologies we can assert, with error probabilities below 2%, that
it is wrong. This result is dependent on the reliability of the estimated value p= 0.33.

With this test, the case of the Low chronology (−1581) is inconclusive. While in
Fig. Ǥ it sits where we expect a wrong chronology to sit, Tab. Ǥ shows that the fit is
not sufficiently poor that the chronology can be rejected on its own merit with the
conventional 5% significance level.

ǣ.Ǡ.ǡ Combining the Ammis
˙
aduqa and Ammiditana data by Bayesian methods

Probabilities from different sources are easiest to combine by Bayesian methods, but it
is difficult to agree on the choice of prior probabilities. We must consider eight pos-
sibilities: four chronologies, and for each of them absence or presence of an additional
intercalation. For the following I give equal probabilities 0.25 to the four main chronolo-
gies, and probability α to the presence of an additional intercalation. As in Section ǣ.ǟ
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these priors are multiplied by

( p (1 − q)
(1 − p) q

)k

where p = 0.33, q = 0.47, and k is the number of misses. The posterior probabilities of
the eight possibilities are obtained by scaling the resulting values so that they sum to 1.
The sum over the four components with additional intercalation then gives the posterior
probability β of having such an intercalation, and for each particular chronology the
posterior probability is the sum of the two values without and with intercalation.

If we were able to prove that there was no additional intercalation, we have α = 0.
If we could make sure that there was one, we have α = 1. Some people might want to
formalize ignorance by α = 0.5, but most might gravitate towards a small value, sayα = 0.05 or α = 0.1. The results of the calculation for the ǠǞǟǡ set (i.e. with the miss
counts of Tab. ǣ) are listed in Tab. ǥ.

We note first that α= 0.1 suffices to boost the posterior probability of an intercalation to
β= 0.85 and the posterior probability of the High Chronology to 0.91, while the other three
chronologies are limited to posterior probabilities below 0.04. Second, confirmation of an addi-
tional intercalation (α= 1) would render the Middle Chronologies utterly implausible.

The results are quite dependent on the observed miss counts. With the ǠǞǟǞ data
set of Tab. Ǣ, the Ammis

˙
aduqa count is more strongly in favor of the High Chronology,

and correspondingly the posterior probability of the latter is as high as 0.91 already forα= 0, and the posterior probabilities of the other three chronologies are all below 0.05.

Prior and posterior probabilities of an additional intercalation:

prior α 0.000 0.050 0.100 0.500 1.000

posterior β 0.000 0.731 0.852 0.981 1.000

Posterior probabilities of chronologies:

prior α 0.000 0.050 0.100 0.500 1.000

HC −1701 0.460 0.843 0.906 0.973 0.983

MC −1645 0.142 0.038 0.021 0.003 0.000

LMC −1637 0.256 0.069 0.038 0.005 0.000

LC −1581 0.142 0.050 0.035 0.018 0.016

Tab. ǥ Ammis
˙
aduqa and Am-

miditana data, ǠǞǟǡ miss counts
of Tab. ǣ. Posterior probabilities
of the four main chronologies.
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ǣ.ǡ Case ǡ: Hammurabi-Samsuiluna

For the Hammurabi-Samsuiluna segment I repeated the analysis of ǟǧǦǠ,28 comprising
54 month-lengths, but used newer astronomical programs. The intercalations are highly
irregular: from Hammurabi year 32 to 36 the New Year longitude increases by 72◦. The
consequence is that for each candidate chronology we must consider at least three dif-
ferent seasonal alignments. Some misgivings about possibly misplaced intercalations
remain.29 If we treat the data as independent evidence, the High chronology (−1701)
again comes ahead. Its miss rate of 20/54= 37% is compatible with that of a correct
chronology, but unpleasantly high and therefore offers only weak supportive evidence.

ǣ.Ǣ Case Ǣ: Ur III

For the Ur III period the situation is more complex, and I shall discuss some of the
problems. If these problems can be resolved, the Ur III month-length data might attain
decisive chronological relevance.

By ǟǧǦǤ we had a total of 228 month-lengths. In ǠǞǟǡ this number was modestly
increased to 240. What I shall discuss here is my more comprehensive analysis of the
smaller earlier set, but using newer programs. Among the different parts of the data, the
Drehem segment from Amar-Sin to Ibbi-Sin (n= 126) probably is to be trusted most.
With the Umma segment from Amar-Sin to Ibbi-Sin (n= 60) there are doubts about
the intercalations,30 and with the Šulgi segment from year 39 to 48 (n= 42) there are
serious doubts about the calendar.

The relative chronology from the beginning of the Ur III dynasty to the end of the
Hammurabi dynasty is well established. By reckoning back from the four main Venus
chronologies one obtains for Amar-Sin year 1 = −2099, −2043, −2035, −1979.31 We
stay on the safe side by assuming that the true date is within ±10 years of the back-
reckoned dates, and that the New Year syzygy longitude is between 310◦ and 50◦. Then
we obtain about 75 feasible alignments for each of the four chronologies: a range of
21 years for the chronology and a little more than 3 months for the season. The four
chronologies together give a total of 252 feasible alignments (there is an overlap for the
middle chronologies).

A simple calculation with the binomial distribution shows that if we are considering
the best of 75 alignments, we need over 70 month-lengths such that the correct chronol-
ogy has an even chance of sticking out, and if we want it to stick out with 90% probabil-
ity, we need about 180 correctly distanced month-lengths. In any case, the Umma and

28 Huber, Sachs, et al. ǟǧǦǠ.
29 See Huber, Sachs, et al. ǟǧǦǠ, ǡǤ.
30 See Huber, Sachs, et al. ǟǧǦǠ, ǡǦ.

31 See Sallaberger ǠǞǟǡ, who points out that indepen-
dent reconstructions suggested uncertainties in the
range of ±1 year.
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Šulgi segments are too small to be used for independent dating on their own – that is,
unless we encounter extraordinarily lucky low miss counts. See also the discussion of
the NB data in Section Ǣ.

Among 8000 alignments between −2213 and −1567, the absolutely best fit of the
228 month-lengths gave 84 misses (with the earlier programs 83 misses)32 and was ob-
tained for three chronologies (Amar-Sin year 1 = −2093, −2020, or −1775). The first is
inside a feasible window, corresponding to the High chronology. Among the 252 feasi-
ble alignments, by chance the 7 best of them happened to contain representatives from
all 4 main chronologies. The 6 alignments matching Middle or Low chronologies had
miss counts between 88 and 90.

The best obtained miss number is unpleasantly high (84/228 = 36.8%). However, the
Drehem subset from Amar-Sin year 1 to Ibbi-Sin year 2 for the same alignment (Amar-
Sin Year 1= −2093, syzygy number of month I=−13 516) gives a miss rate close to the
NB value (43/126 = 34.1%), and the Umma subset even a lower one (18/60 = 30%). On the
other hand the Šulgi segment contributed an extraordinarily high number of misses to
the total, namely 23 out of 42 months. Note that this rate, 23/42 = 54.8%, lies even above
the rate expected for a wrong chronology, and the probability that a correct alignment
produces 23 or more misses is merely 0.3%. But by aligning the Šulgi segment 5 months
earlier, the number of misses was reduced from 23 to 14. Through this hypothetical
modification the miss rates were reduced to the NB value: namely for the Šulgi segment
to 14/42 = 33.3% and for the full set to 75/228 = 32.9%. With this modification, the fit of
the −2093 chronology, giving 75 misses, was far superior to the best of the other feasible
alignments (86 misses for the −2037 and −1979 chronologies). In any case, the original
Šulgi segment appeared to be the odd man out, and I wondered whether Šulgi’s years
began in fall.

The calendars of Drehem and Umma were not synchronized, and several intercala-
tions differ.33 The intercalary months usually, but not always, were inserted at the end
of the year. Sometimes a ǟǡth month was used by the scribes as a placeholder for the
first month of the next year, if the name of the new year was not yet known to them.

Wu Yuhong distinguishes between two different calendars used in Ur III times.34

The month-names of what he calls the Mǎsda calendar were i: iti-mǎs-dà-gu7, ii: iti-̌sěs-
da-gu7, iii: iti-u5-bí-gu7, iv: iti-ki-siki-dNin-a-zu, v: iti-ezem-dNin-a-zu, vi: iti-á-ki-ti,
vii: iti-ezem-dŠul-gi, viii: iti-̌su-ěs-̌sa, ix: iti-ezem-mah

˘
, x: iti-ezem-an-na, xi: iti-ezem-

Me-ki-gál, xii: iti-̌se-kin-kud. However, at least in Šulgi years 44–48, an alternative so-
called Akiti calendar was in use, where the year began in fall, with month vi: iti-á-ki-ti
of the Mǎsda calendar. This would seem to give a posterior justification to the experi-

32 See Huber ǟǧǦǥ, ǟǢ–ǟǣ. 33 This was noted already by Huber, Sachs, et al. ǟǧǦǠ,
ǡǦ. See now Wu Yuhong ǠǞǞǠ for a detailed investi-
gation.

34 Wu Yuhong ǠǞǞǞ.
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mental ǣ-month shift I had applied to the Šulgi data (the years 44–48, where the Akiti
calendar had been in use, contain about three quarters of the Šulgi month-lengths avail-
able to us). From Amar-Sin on, the Mǎsda calendar was in use.

Now, what should we do: keep the original Šulgi data, shift them by 5 months, or
ignore them? Either way, the Ur III data provide additional, admittedly not quantifiable
support for the High chronology. The Middle chronologies give poorer fits. But the
Ur III calendars and their synchronization clearly need more investigation before they
can be fully trusted for the purposes of dating.

Ǥ Summary: internal consistency and coherence of the results

The Ammis
˙
aduqa month-length data show the pattern to be expected from one correct

and three wrong chronologies, see Figs. ǡ–Ǣ, and they point toward correctness of the
High chronology (−1701). The Ammiditana data show the same behavior, see Fig. ǣ.
The discussion of Tab. ǣ in Section ǣ.Ǡ provides strong evidence in favor of the High
chronology and against the Middle chronologies. Clean quantitative results are obtained
by forming a working hypothesis on the basis of the Ammis

˙
aduqa data and then testing

it with the Ammiditana data. This approach allows to affirm the High chronology on at
least the 5% level, and if we are willing to lower ΔT by 3 minutes against the arbitrarily
assumed default formula, it is confirmed even on the 1% level. By a Bayesian argument
it can be shown that the High chronology is roughly 25 times more probable than each
of the other three main chronologies (Tab. ǥ).

The Hammurabi-Samsuiluna and the Ur III data support these results, even if their
reliability might be questioned. In addition, the Simānu eclipse of EAE 20, commonly
thought to refer to the death of Šulgi, can be identified with the lunar eclipse of −2094
July 25, just one year before the date −2093 of Amar-Sin year 1 suggested by the month-
lengths. None of the other possible identifications of that eclipse fall within one of the
time windows implied by the Venus chronologies.35

The test performed in Section ǣ.Ǡ.ǟ implies that also for Old-Babylonian times the
miss rate for a correct chronology is substantially below that for a wrong chronology.
The miss counts corresponding to the High chronology, as shown in Figs. ǡ, Ǣ, ǣ, and Ǥ,
all approximately correspond to the 33% Neo-Babylonian rate. This does not prove that
the OB rates for correct chronologies are equal to the NB rates, but at least they do not
contradict such an assumption.

35 See Huber ǟǧǧǧ/ǠǞǞǞ, ǥǥ, for a list of alternative
identifications (the next eclipses matching the de-

scription in the omen are in −2018, −2007, −2001,
−1936).
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In my opinion, internal coherence of the results is an even stronger indication of
their trustworthiness than any statistical significance assertions. And anyone desiring to
defend one of the Middle chronologies, rather than ignore the opposing month-length
evidence, or simply discount it as being the only witness in favor of the High chronology,
should better find plausible arguments discrediting the evidence of Figs. ǡ, Ǣ, ǣ, and Ǥ. In
order to be convincing, such arguments would seem to require new data. They might
be based on a large, reliable set of contradictory new month-length data, or on new
eponym lists bridging the interval between Old Assyrian and Neo-Assyrian times.

ǥ Modeling and simulation of crescents and month-lengths

In statistics, the principal purpose of modeling and stochastic simulation quite gener-
ally is to obtain crude estimates of the statistical variability of various empirical measure-
ments. The models are designed to give a satisfactory phenomenological description of
the situation. Whether they can give a causal explanation is a more difficult and possibly
unanswerable question. Here are the facts and assumptions on which we shall base the
models.

For randomly chosen wrong chronologies the agreement/disagreement rates be-
tween observed and calculated month-lengths are fixed by astronomical theory, that
is by the length of the synodic month (29.5306 days): 53% of the months have 30 days,
47% have 29 days. It follows that a collection of ǡǞ-day months, when aligned at random
along a calculated sequence, has an expected miss rate of 47%.

An approximate estimate of the variability of empirical miss rates then can be ob-
tained from the binomial distribution for which the miss counts have the standard de-
viation

√n p (1 − p). An alternative, perhaps more reliable version can be found by
aligning a batch of observed ǡǞ-day months at many positions along a calculated se-
quence of such months. See Fig. Ǡ for a comparison between the two approaches.

For a correct chronology the LB astronomical texts give a rock bottom lower limit of
about 10% for the rate of discrepancies between observed and calculated month-lengths.
I used the calculated sequence of 33 000 months to check the effects of the pure gray-
zone model (with d= 1.1◦). The probability of seeing the crescent 1 day early was 2.56%,
and that of seeing it 1 day late was 2.51%. Months never were shortened to 28 days
by gray-zone effects, but occasionally they were lengthened to 31 days. With calculated
Ǡǧ-day months, lengthening to 31 days happened in 0.06% of the cases, with ǡǞ-day
months in 0.23% of the cases (that is, about once in a human life-time). Calculated Ǡǧ-
day months were lengthened to 30 days in 10.4% of the cases, and ǡǞ-day months were
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shortened to 29 days in 9.4% of the cases. This corresponds to the 10% miss rates of the
LB astronomical texts.

The NB administrative texts give a higher discrepancy rate. As mentioned in Sec-
tion Ǣ there are 149 NB texts dated to day 30, and 49 of them occur in a month that
according to calculation has 29 days. The discrepancy rate thus is approximately 29/149 =

33%. Up to 27 of these 49 discrepancies might be explainable by ‘gray-zone’ effects of
early or late sightings, namely those for which |Δh| ⩽ 1.1◦, but at least 22 discrepancies
must have a different cause. Note that at the begin of a month lengthening can occur
only because of a fortuitous early sighting in the range −1.1 ⩽ Δh ⩽ 0, while at the
end poor weather or sheer lack of care might cause a delay with values of Δh larger
than +1.1.

I propose a simple two-component model. One component corresponds to the
‘gray-zone’ model of the astronomical texts, and the other to a practice of ‘overhang
dating’ or ‘double dating’ (a term preferred by Michael Roaf) by the ancient scribes:
when dating a text they would occasionally write day 30 in cases where they more prop-
erly should have written day 1 of the next month. The consequences of such a model
shall be developed in Section Ǧ (following next). Evidence for the presence of overhang
dating is contained in Sallaberger’s remark,36 according to which Amar-Sin year 5 con-
tained 9 day-ǡǞ dates, instead of the expected 6. In other words, we can have more day-ǡǞ
dates than are astronomically possible. Note that variability caused by ‘gray-zone’ effects
would stay on in the calendar, while ‘overhang’ effects would not. If the officials respon-
sible for the calendar should decide that the preceding month had had only 29 days, the
scribe simply would skip a day and let day 30 be followed by day 2.

A letter to an Assyrian king (presumably Assurbanipal) has the remarkable passage:

I observed the (crescent of the) moon on the ǡǞth day, but it was high, too high
to be (the crescent) of the ǡǞth. Its position was like that of the Ǡnd day. If it
is acceptable to the king, my lord, let the king wait for the report of the Inner
City before fixing the date.37

This letter is interesting because it shows that the beginning of the month could be fixed
retroactively, and possibly the length of the preceding month even could be shortened
to 28 days.

A possible argument against this simple overhang model is that a (preliminary)
investigation of Ur-III-time month-lengths based on regular deliveries did not seem to
give a substantially better agreement with calculation than those based on day-ǡǞ dates.

We do not know when and why the scribes would use overhang dating, but we can
crudely estimate how often it may have occurred in the NB material. In Section Ǣ, I had

36 Sallaberger ǟǧǧǡ, ǟǠ. 37 Parpola ǟǧǧǡ, Letter ǠǠǣ.

ǣǞ



̤̙̞̗̔̑ ̩̒ ̝̟̞̤̘-̜̞̗̤̘̣̕ ̢̦̙̣̙̤̔̕̕

estimated that overhang might occur between 40% and 50% of the cases. The theoretical
model of the next section gives the best fit when assuming an overhang probabilitypov = 0.46.

Overhang dating according to the model just described raises a problem: if many
scribes independently use it, then every true hollow month ultimately will acquire some
overhang dates. But true full months will obtain day-ǡǞ dates more often than true
hollow months. In this case the proper solution is to count dates with their observed
multiplicity. On the other hand, whenever multiple dates originate in the same scribal
office, they are strongly dependent and one should count them only once. It is difficult
to separate these cases. Here, I acted as if the second case applied and counted multi-
ple occurrences only once (with the presently available material they are relative rare
anyway).

Ǧ Theoretical miss rates

Independently of the cause of the discrepancies between calculated and observed month-
lengths, the calculation of the miss rates of day-ǡǞ dates is, essentially, a straight exercise
with conditional probabilities.

The miss rate in question is the conditional probability, given a recorded day-ǡǞ date
(D30), that the underlying month calculates as a Ǡǧ-day month (C29):

pmiss = P(C29|D30) = P(C29 & D30)P(D30) .

We haveP(C29 & D30) = P(D30|C29) P(C29),P(D30) = P(D30|C29) P(C29) + P(D30|C30) P(C30).

HereP(C29) = 0.47,P(C30) = 0.53.

If we assume zero width for the gray zone, and that overhang occurs at random with
probability pov, and if we assume that dates higher than day 30 are not permitted, thenP(D30|C29) = pov,P(D30|C30) = 1,
and we can substitute these values into the above formula for pmiss.

Now assume a gray zone with finite width, such that in the absence of overhang the
miss rate for month-lengths is μ = 0.1.
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Then, the last two probabilities are changed toP(D30|C29) = pov + (1 − pov) μ,P(D30|C30) = 1 − (1 − pov) μ.

The justification for these formulas is as follows.
– Given that there is overhang in that particular month, then P(D30|C29) = 1,

and given that there is none, then P(D30|C29) = μ.
If overhang occurs with probability pov, then we obtain the first of the above for-
mulas.

– Given that there is overhang in that particular month, then P(D30|C30) = 1,
and given that there is none, P(D30|C30) = 1 − μ.
If overhang occurs with probability pov, then we obtain the second of the above
formulas: P(D30|C30) = pov + (1 − pov)(1 − μ) = 1 − (1 − pov) μ.

I believe the most questionable assumption in the above arguments is that overhang
occurs at random (i.e. independent of Δh). It appears at least plausible that overhang
is more likely to occur for small values of Δh than for large ones. But the NB material
does not really support such a conjecture, see Tab. ǡ. It shows a clear cluster of values in
the gray zone (Δh ⩽ 1.1). In the range between 1.6 and 6.8 the number of Δh values
shows a moderate decrease, but this decrease seems to go in parallel with a decrease in
the number of Δh values calculated for Ǡǧ-day months.

The following probabilities were calculated with the above model, on the basis
of 33 000 calculated month-lengths, not on the binomial distribution, by applying the
model to a large number of randomly chosen subsets of the calculated sequence. The
overhang probability was empirically adjusted to pov = 0.46, so that the combined mod-
el approximately reproduced the miss rate of 50/153= 0.327 of the Neo-Babylonian ma-
terial.

For the purpose of these modeling calculations I assumed for the gray zone model:
– if Δhd < −1, the crescent is never seen;
– if −1 ⩽ Δhd ⩽ 1, the crescent is seen with probability (1 + Δhd )/2;
– if Δhd > 1, the crescent is always seen,

with d = 1.1◦ (in ǟǧǦǠ I had used d = 1.0◦).

Pure overhang model (overhang probability pov = 0.46):
Miss rate P(C29|D30) = 0.290

Pure gray zone model (zone width d = 1.1◦):P(D30|C29) = 0.104P(D30|C30) = 0.906
Miss rate P(C29|D30) = 0.092
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Binomial and empirical, n=27
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Fig. ǥ Comparison between the binomial distribution (n= 27, p= 0.325, blue) and the empirical frequencies
obtained from ǟǞǞǞ samples based on the overhang model (d= 1.1◦, pov = 0.46, red).

Combined model (pov = 0.46, d = 1.1◦):P(D30|C29) = 0.516P(D30|C30) = 0.949
Miss rate P(C29|D30) = 0.325

The sequence of calculated month-lengths is not quite random, and therefore the dis-
tribution of the miss counts does not necessarily follow a binomial distribution. In the
case of the wrong chronologies, it had been possible to compare the binomial distri-
bution with the results of a large number of alignments (Fig. Ǡ). The case of the cor-
rect chronology is less straightforward, but we can compare the binomial distribution
with the results of the simulated error model. Also here the binomial distribution gives
a very good approximation. Fig. ǥ shows a comparison between the empirical frequen-
cies based on the above overhang model (d= 1.1◦, pov = 0.46) and the binomial dis-
tribution (n= 27, p= 0.325). The empirical frequencies were obtained by drawing
1000 random samples of size 27 from the calculated sequence of months and then ap-
plying random gray zone and overhang effects.
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ǧ Sensitivity to the clock-time correction ΔT
A central problem of historical astronomy is our insufficient knowledge of the clock-
time correction ΔT = ET − UT (the difference between the uniform time scale ET
underlying the astronomical calculations and civil time UT depending on the irregular
rotation of the earth). Because of tidal friction ΔT increases quadratically with time, but
it is subject to sizable random fluctuations. By now, it is reliably known back to 700 BC
within a standard error of approximately 5 minutes, but its extrapolation from there to
2000 BC is affected by a standard error of about 1 hour.38

For the present paper I have assumed a formula proposed by Morrison and Stephen-
son (in a paper published in ǟǧǦǠ) as my default:39 ΔT = c t2 sec, with c = 32.5
and t measured in centuries since AD 1800, together with lunar orbital accelerationṅ = −26′′/cy2. I made this choice for three reasons: first, because of its simplicity, sec-
ond, because calculations based on it agree very closely with the traditional tables by
P. V. Neugebauer and Tuckerman,40 and third, last but not least, if the solar eclipse of
Sargon of Akkad has been correctly identified, it implies thatΔT in the mid-ǠǢth century
was between −20 and +7 minutes of that default.41 For that time this corresponds to
a range of c between 31.7 and 32.8. Moreover, this solar eclipse now would seem to de-
termine the clock-time correctionΔT with a standard error of the order of 10–15 minutes
back to the ǠǢth century BC. If the Ugarit eclipse of −1222 has been correctly identified,
perhaps 10 minutes higher values of ΔT , corresponding to values of c that are about
0.5 higher, may hold for the Ur III and OB periods.42

I found it convenient to vary ΔT by modifying the parameter c; note that a change
of 1 unit in c by −1700 amounts to a change of 20 minutes in ΔT . I believe that the
most probable range of c is between 31.5 and 33.5, but for the sensitivity study depicted
in Figs. Ǧ, ǧ, ǟǞ, ǟǟ, and ǟǠ, I have applied a range of c between 27 and 38, that is of
approximately ±2 hours for the Ur III and OB periods. These figures are based on the
data available in ǠǞǟǡ.

One of the questions to be addressed by this sensitivity study was whether perhaps
the sensitivity of the miss counts to ΔT was such that that ultimately they might be used
to improve our estimates of ΔT .

38 Huber ǠǞǞǤ.
39 Morrison and Stephenson ǟǧǦǠ.
40 P. V. Neugebauer ǟǧǠǧ; Tuckerman ǟǧǤǠ; Tucker-

man ǟǧǤǢ.
41 Huber ǠǞǟǠ; Morrison and Stephenson ǟǧǦǠ. The

formula more recently proposed by the latter
authors in ǠǞǞǢ for extrapolation beyond −700,

namely ΔT = −20 + 32t2 sec, with t in centuries
since AD 1820, differs only negligibly: the differ-
ence in ΔT increases from 0 in −600 to 3 minutes
in −1700 and 6 minutes in −2400 (Morrison and
Stephenson ǠǞǞǢ).

42 Huber ǠǞǟǠ, Fig. ǡ, showing the deviations from the
default ΔT and their variability.
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As_32, n=32: dependence of misses on DeltaT
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Fig. Ǧ Sensitivity of miss counts to ΔT , Ammis
˙
aduqa data; n= 32.

We note that in the figures for the Ammis
˙
aduqa data (Fig. Ǧ), for the Ammiditana (+1)

data (Fig. ǟǞ), and for their combination (Fig. ǟǠ), the default ΔT (c= 32.5) yields a
local maximum of the miss counts for the High chronology, with a local minimum forc between 30.5 and 31.25. This minimum is reached by a decrease in ΔT of about 25
minutes. I was almost tempted to derive an improved estimate of ΔT for the OB period
from this. At the same time, lowered values of the miss counts would much improve the
rejection levels in Section ǣ.Ǡ, see in particular Section ǣ.Ǡ.ǟ. However, I do not intend
to insist on these arguments.

But in any case, this sensitivity study shows that our default choice forΔT , by leading
to a local maximum for the miss counts, happens to be conservative.
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Ad0_17, n=17: dependence of misses on DeltaT
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Fig. ǧ Sensitivity of miss counts to ΔT , Ammiditana data, +0 intercalation; n = 17.

Ad1_17, n=17: dependence of misses on DeltaT
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Fig. ǟǞ Sensitivity of miss counts to ΔT , Ammiditana data, +1 intercalation; n = 17.
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Ad0As_49, n=49: dependence of misses on DeltaT
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Fig. ǟǟ Sensitivity of miss counts to ΔT , Ammiditana-Ammis
˙
aduqa data, +0 intercalation; n = 49.

Ad1As_49, n=49: dependence of misses on DeltaT
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Fig. ǟǠ Sensitivity of miss counts to ΔT , Ammiditana-Ammis
˙
aduqa data, +1 intercalation; n = 49.
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ǟǞ Appendix: the underlying data base

ǟǞ.ǟ Intercalations during the reign of Ammis
˙
aduqa

The connection of the Venus text with the reign of Ammis
˙
aduqa had been established by

Kugler in ǟǧǟǠ, when he identified the year name ‘Year of the Golden Throne’ occurring
in the Ǧth year of the Venus text with the name of the Ǧth year of king Ammis

˙
aduqa.43

Since then, some doubts about the conclusiveness of the identification have been voiced
(there are other year names involving a Golden Throne), but we now can establish the
connection beyond doubt with the help of the intercalations.

The Venus text has first visibilities of Venus in the morning of Year 1 XI 18 and
of Year 17 XII 14, thus spaced 16 years and 1 month. Between these dates there are 10
synodic periods of Venus, corresponding to 5840 days or 198 synodic months. As 16
lunar years contain only 16× 12 = 192 months, there must be 5 intercalations between
these two dates. In order to obtain the correct spacing between Venus phenomena, the
5 intercalations in question must have occurred as:

(ǟ) (4A or 4U), (5U), (9A or 10U), (11U attested), (13U or 13A or 14U).

Here, A stands short for a second Addāru (XII2), U for a second Ulūlu (VI2).44 On the
other hand, contemporary administrative documents attest the following intercalations
for the first 16 years of Ammis

˙
aduqa:

(Ǡ) 4A, 5U, 10U, 11U, 13A.

In addition, they attest a 17A. Note that texts from Sippar Amnanum show that the years
previously provisionally denoted 17 + a and 17 + b can be identified with the years
17 and 18.

The probability that an agreement as good as that between (ǟ) and (Ǡ) occurs by
chance is less than 1 in 1000. This can be calculated as follows. There are 15×14×13×12×11

6×2
= 30 030 possibilities for placing 3 U tokens and 2 A tokens in 15 slots (the 15 years from
2 to 16). However, not all are feasible. Intercalations are inserted to keep the years in step
with the agricultural seasons, and on average a regular year decreases the New Year lon-
gitude by 10.7◦, while an intercalary year increases it by 18.4◦. If we only permit inter-
calation patterns that keep the difference between the maximal and minimal New Year
longitude below 45◦ or 50◦ – for the actual Ammis

˙
aduqa intercalations this difference

is 44.5◦ – merely between 20% or 30% of the possibilities remain feasible. Among the
12 patterns of intercalations made possible by the Venus text, 4 satisfy the requirement

43 Kugler ǟǧǟǠ. 44 Following the convention of Parker and Dubber-
stein ǟǧǣǤ, Ǥ.
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that there are 3 U and 2 A tokens. Thus, the probability of hitting by chance a pattern
compatible with the Venus text is approximately 4 in 6000 trials, that is 0.0007.

This has important consequences. It shows that the Venus text refers to the time of
Ammis

˙
aduqa, and that the traditional year count of the Venus tablet agrees with years 1

to 17 of that king. Moreover, we know that we have a complete list of all intercalations
of years 1 to 17, except that perhaps an intercalation 1U might be missing.

Tab. Ǧ lists the intercalations attested or implied by the Venus Tablet, and those
attested by contemporary contracts. Unpublished data mentioned in LFS are highly un-
reliable; among them, 5U has now been confirmed by the Cornell text CUSAS 8 55,45

while 14U in all probability is wrong. The second-but-last column counts the number of
months preceding the beginning of the year, and the last column gives the deviation of
the New Year syzygy longitude from that obtained for Year 5 (which for all chronologies
within 1◦ corresponds to the median value).

Year 18 is missing in the Venus text, and years 19–21 constitute the highly question-
able ‘Section III’ of the text. We shall ignore evidence derived from that section of the
Venus text.

Seth Richardson points out that the names of years 13 and 17 are almost indistin-
guishable, so some texts may have been misclassified. This should not create problems
with regard to intercalations (both years have a second Addāru), but might do so with
regard to month-lengths.

ǟǞ.Ǡ Intercalations during the reign of Ammiditana

The intercalations in Tab. ǧ are attested for the 37 years of Ammiditana.46 The last col-
umn gives an arbitrary count of month numbers preceding the begin of the year (as in
Section ǟǞ.ǟ above).

For the first 21 years of Ammiditana only 4 or 5 intercalations are attested, whereas
the expected average is 7 in 19 years, so some appear to be missing. For the last 16 years
(years 22 to 37) 8 intercalations are attested. There is a surprising sequence of 4 consec-
utive intercalary years (25 to 28), and even if we delete the improbable month XI2(!?)
in year 25, we are still slightly above the expected average. For 25 XI2 the text has ITI
ZIZ2 DIRI(= SI.A) instead of the expected ITI ZIZ2.A, and we can assume that this is a
scribal error. So it is possible that we have the full pattern of intercalations for the years
22 to 37.

45 Search for this text in http://www.archibab.fr/
4DCGI/recherche5.htm, under Mois: 6-bis, Roi:
Ammis

˙
aduqa, Année: 5 (visited on ǟǥ/ǥ/ǠǞǟǥ).

46 From Huber, Sachs, et al. ǟǧǦǠ.
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Year Venus Tablet Contracts MNU NYL

1 0 12◦

2 12 2◦

3 24 −8◦

4 A or U implied A VAS 7 76; BM 17563 36 −18◦

5 U implied U CUSAS 8 55 49 0◦

6 62 18◦

7 74 7◦

8 86 −4◦

9 9A or 10U 98 −14◦

10 9A or 10U U YOS 13 532; BE 6/1 106; BM 81130;
BM 26602

110 −24◦

11 U attested U CT 8 3a; BM 81350 123 −6◦

12 136 12◦

13 13U or 13A or 14U implied A YOS 13 404; TLB 1 211; BIN 7 208-9;
BM 78461; BM 79435; BM 81396;
BM 81747; Dalley, Edinb. No.20;
OLA 21 no.69; CUSAS 8 13

148 1◦

14 (U LFS unpublished) 161 19◦

15 173 9◦

16 185 −2◦

17 A TCL 1 171; BAP 9; VAS NF II 99;
YOS 13 53; BM 79010

197 −13◦

18 210 5◦

19 U attested U YOS 13 146 222 −5◦

20 A or U implied 235 13◦

21

Tab. Ǧ Intercalations attested or implied by Venus Tablet and those attested by contemporary contracts.
Previously uncertain year names: 17 + a = 17; 17 + b = 18; 17 + c = 2; 17 + d = 19.
For 17 = 17 + a and 18 = 17 + b, see Nahm ǠǞǟǢ.
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Yr Type Text MNU

1 regular


















(cf. BE 6/1 82:14–22. Between Ae 28 III 30 and
Ad 5 XII 30 there are 5 years and 10 months.)2 regular

3 regular

4 XII₂ BE 6/1 91; YOS 13 205

5

6

7

8

9

10 XII₂ PBS 8/2 202; AO 8126; BM 17313; BM 78465

11 (XII₂ LFS unpubl.)

12

13 XII₂ BM 22522

14 XII₂ YOS 13 1 = HSM 48 (coll. Moran)

15

16

17

18

19

20

21

22 XII₂ YOS 13 197; PSBA 34 24; see YOS 13 p.1 and JCS 13 39a 799

23 812

24 824

25 XI₂(!?) YOS 13 272 836

26 XII₂ CT 6 39a= BM 80596; BM 16684(?, coll. Walker) 848

27 XII₂ BE 6/2 109 861

28 XII₂ BM 80977 874

29 887

30 899

31 911

32 XII₂ BM 78668; BM 16535; MHET 1/1 11 923

33 XII₂ BE 6/2 112 936

34 949

35 961

36 973

37 XII₂ Kraus, Edikt 28 3′; RA 63,48 37–39; YOS 15 72; BM 79897 985 Tab. ǧ Intercalations attested for
the reign of Ammiditana.
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However, the intercalary pattern is highly irregular. There are 3 consecutive inter-
calations in the years 26–28. I do not think that in the immediately preceding or fol-
lowing 3 years intercalations are missing, but for the 7 years between Ammiditana 34
and Ammis

˙
aduqa 3 only a single intercalation is attested. Note that on average a regular

year decreases the New Year solar longitude by 10.7◦, while an intercalary year increases
it by 18.4◦. Thus, the 3 intercalary years 26–28 increase the New Year longitude by 55◦,
while the 7 years from year 34 on, containing 6 regular and 1 intercalary years, decrease
it by 46◦.

Given the irregular pattern of intercalations, the lack of attested intercalations be-
tween the years 15–21, and the wide spread of the New Year longitudes (their range is
58◦ for Ammiditana, 44◦ for Ammis

˙
aduqa), we cannot exclude the possibility that near

the border between the Ammiditana and Ammis
˙
aduqa blocks an unattested interca-

lation is missing, for example a XII2 in Ammiditana Year 36, or a VI2 in Ammis
˙
aduqa

Year 1. This choice shifts the entire block of attested month-lengths (from 24 IV to 36 XII)
together by 1 month. We should keep the possibility of an additional intercalation in
mind.

ǟǞ.ǡ The Ammis
˙
aduqa month-lengths

The month-lengths in Tab. ǟǞ are attested in contracts from the reign of Ammis
˙
aduqa,

years 1–19.
The list is taken from Astronomical Dating of Babylon I and Ur III,47 21 months with

11 later additions (6 from Marten Stol, between ǟǧǦǠ and ǠǞǟǞ, and 5 from Seth Richard-
son in ǠǞǟǡ, the latter with superscript R and noted with n for ‘new’ in the last col-
umn). Later on, too late to be used in the calculations, Michael Roaf supplied a ta-
ble with month-lengths (mostly collated by Frans van Koppen); it was merged into
the list in Tab. ǟǞ. For the 32 entries used in the calculations, the MNU column gives
the month number, arbitrarily counted from month I of Year 1 (assuming that year 1 is
regular).

Roaf noted: BM 92520 (Meissner BAP 107) and CBS 01346 (Van Lerberghe Mél De
Meyer 159–168) are duplicates. VS 7 109 is dated As 16-02-08 but line 3 mentions iti
bara2-zag-gar u4-30-kam as the date of a recent expenditure. Old Babylonian legal and
administrative texts from Philadelphia by Karel van Lerberghe. Note that MLC 1517
(YOS 13 65) has 30 written on top of 2 or vice versa (Year 19 X 2/30) and so is not
included in the list in Tab. ǟǞ.

47 Huber, Sachs, et al. ǟǧǦǠ, Ǥǣ.
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Year Month Day Texts MNU

1 VII 30 MAH 16218 (TJDB p.31) 7

VIII 30 VAT 06253 (VS 7 68) 8

XII 30 BM 78640; BM 79869R 12

3 IV 30 BM 92606 28

VI 30 VAT 06380A (VS 7 73) 30

4 XI 30 BM 26350a 47

XII₂ 30 VAT 06238 (VS 7 76) 49

5 VIII 30 BM 16644R 58 n

XII 30 MLC 1349 (YOS 13 165) 62

6 VI 30 BM 80804 68

7 XII 30 MLC 0452 (YOS 13 126) 86

11 II 30 BM 80984R; BM 97370R 125

VII 30 BM 97733R 131 n

IX 30 BM 97623 (De Graef, AuOr 20 82f.
no. 06)

12 IV 30 IM 50423 (Edzard, ed Der no.49) 140

VII 30 BM 80896R 143 n

VIII 30 BM 81105 144

13 I 30 BM 97250R 149 n

II 30 BM 17146 150

VI 30 IM 81586 (Van Lerberghe, Mél.
Tanret, 592-594)

X 30 CBS 01219

XII 30 MLC 0828 (YOS 13 220); BM
81677R; BM 97495R

160

XII₂ 30 BM 78459R, BM 81096, CBS 01473
(Van Lerberghe, OB Legal 069)

161 n

14 IV 30 BM 79287 165

VI 30 Strasbourg 324 (Frank 28) 167

VIII 30 CBS 01734 (JCS 11 p.93) 169

(continued on next page)
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(continued from previous page)

Year Month Day Texts MNU

15 II 30 MLC 0822 (YOS 13 221) 175

X 30 BM 13596 (RA 69 p.188) 183

XII 30 BM 80167 (CT 2 18) 185

16 I 30 BM 92520 (Meissner BAP 107);
VAT 06382 (VAS 7 109); CBS
01346 (Van Lerberghe, Mél. De
Meyer, 159–168)

186

XI 30 CBS 01672 (PBS 14 pl.64 no.1078);
VAT 05925, 05938 (Kugler, SSB II
p.246)

196

XII 30 VAT 05391 (VS 7 121); BM 97495 197

17 XI 30 VAT 06287 (VS 7 133) 208

XII 30 VAT 06224 (VS 7 139); BM 80404
(CT 48 76)

209

18 III 30 BM 87292+ 87337

V 30 BM 81624 (CT 48 78) 215

X 30 CUNES 51-01-045 (CUSAS 8 40)

19 III 30 BM 81079R

Tab. ǟǞ Month lengths attested
in contracts from the reign of
Ammis

˙
aduqa.

Previously uncertain year names:
17 + a = 17; 17 + b = 18;
17 + c = 2; 17 + d = 19.

ǟǞ.Ǣ The Ammiditana month-lengths

The month-lengths in Tab. ǟǟ are attested in contracts from the reign of Ammiditana.
In view of the incomplete list of intercalations, only month-lengths from the years

22–37 are usable. The list is taken from Astronomical Dating of Babylon I and Ur III:48

13 months, plus 4 from Richardson ǠǞǟǡ, the latter with superscript R and noted with
n in the last column. Later on, too late to be used in the calculations, Michael Roaf
supplied a table with month-lengths (mostly collated by Frans van Koppen, but in par-
ticular the 26.VI and 26.IX and 36.I need to be confirmed); it was merged into the list in
Tab. ǟǟ. For the 17 entries used in the calculations, the MNU column gives an arbitrary
count of month numbers.

48 Huber, Sachs, et al. ǟǧǦǠ, ǤǢ–Ǥǣ.
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Year Month Day Texts MNU

1 X 30 VAT 6655 (VAS NF 2 15)

XII 30 BM 80336; BM 81465; Bu 1891-05-09, 0473 (CT 6 26b)

2 XI 30 Di 720 (K. van Lerberghe)

XII 30 BM 17482; BM 80623

4 VIII 30 BM 78704 = ? (CT 33 47b)

XII₂ 30 CBS 0723 (BE 6/1 91)

5 XII 30 CBS 0110 (BE 6/1 82)

6 IV 30 BM 80161 (CT 45 46)

7 XII 30 U.7183 (UET 5 518); MLC 00452 (YOS 13 126); CBS 0125

14 III 30 BM 78182 (CT 45 48)

IX 30 BM 109169

XII₂ 30 HSM 48 (YOS 13 1)

24 I or V 30 BM 81569

IV 30 BM 80513 828 n

VII 30 AO 01679 (TCL 1 153) 831
VIII 30 BM 80513

26 VI 30 VAT 5912 (Kugler, SSB II p.246) 854
IX 30 VAT 5806 (Kugler, SSB II p.246) 857

27 VII 30 BM 97441

XII₂ 30 CBS 0366 (BE 6/2 109) 874
29 II 30 MLC 1291 (YOS 13 254) 889
30 IV 30 TJAUB pl.39(H 31) 903

VII 30 BM 97013R 906 n

31 II 30 CBS 1241 (BE 6/1 83) 913
XII 30 CBS 1512 (BE 6/1 84) 923

32 VIII 30 BM 96990R 931 n

XII 30 BM 78609 935
33 IX 30 BM 97447R 945 n

34 VIII 30 MLC 0440 (YOS 13 79) 957
IX 30 VAT 6392 (VS 7 60) 958

36 I 30 VAT 06258

II 30 MLC 0425 (YOS 13 57) 975
XII 30 BM 78719 985

37 IV 30 BM 97057

Tab. ǟǟ Month lengths attested in contracts from the reign of Ammiditana.
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Puzrǐs-Dagan”. Journal of Ancient Civilizations (JAC)
ǟǣ (ǠǞǞǞ), ǥǧ–ǧǠ.

Wu Yuhong ǠǞǞǠ
Wu Yuhong. “The Calendar Synchronization and
the Intercalary Months in Umma, Puzrǐs-Dagan,
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